Ford GT Testing Technologies For The Future

This Story Brought to You By:

Tee Box Times is the "Official Golf News" of Myclassic News

Click here to check out The Tee Box Times

FORD GT

In creating the all-new high performance Ford GT, the pioneers behind the supercar designed it not only to win races but also to serve as a test bed for new technologies and ideas for future vehicles across Ford’s vehicle lineup.

“When we began work on the all-new Ford GT in 2013, the team had three goals,” said Raj Nair, Ford executive vice president of Product Development and chief technical officer. “The first was to use it as a training ground for our engineers as we develop future engine technology and stretch our understanding of aerodynamics. Then, to push the boundaries of advanced material usage, such as lightweight carbon fiber. Finally, we set out to win the Le Mans 24 Hours, referred to by many as the ultimate test of endurance and efficiency.”

“Without this kind of integrated teamwork and combined organization, it would have been impossible to deliver the all-new Ford GT in its current form,” said Dave Pericak, global director, Ford Performance. “This kind of collaboration was critical to not only bringing Ford GT back to life but for experimenting with the kind of innovations needed to create the ultimate supercar.”

GT has proven power to inspire. The 2005 Ford GT, for instance, featured a lightweight aluminum alloy body that helped reduce weight to improve performance. Lessons learned from its production led to the innovative use of high-strength aluminum alloy in today’s Ford F-Series pickup trucks and the all-new Ford Expedition full-size SUV – shedding hundreds of pounds of weight, while also improving capability, performance and fuel efficiency.

AERODYNAMICS

While GT looks fast standing still, the team optimized every shape to make it as aerodynamic as possible.

A key goal was to reduce drag and optimize downforce – which helps give the supercar stability and grip on the track while accelerating, cornering and braking.

GT’s aerodynamics change on demand to meet varying driving conditions, thanks to moveable elements around the body, including special ducts in the front, and a large deployable wing. The flaps open and close depending on whether GT’s wing is up or down, so the car remains aerodynamically balanced from front t0 back at all speeds. When the wing is up, the ducts close to increase downforce; when the wing is down, the ducts open to decrease downforce.

Even the engine helps GT’s aerodynamics. The compact sixcylinder design of the car’s EcoBoost® engine allowed the team to taper its fuselage to more efficient dimensions than a larger V8 would have allowed. In addition, the low placement of the engine’s turbochargers and outboard placement of the turbo intercoolers ahead of the rear wheels help to taper the fuselage around the engine.

 

THE ENGINE

Ford GT’s 3.5-liter EcoBoost engine is the company’s most powerful EcoBoost ever, delivering 647 horsepower. It was developed alongside the GT race engine and the 3.5-liter EcoBoost engine used in the F-150 Raptor high-performance off-road pickup, which shares almost 60 percent of its parts with GT’s engine.

For instance, during racing, the test engine’s crankshafts in the Daytona Prototype were cracking under grueling conditions. With little time to get ready for the Sebring endurance race that year, the team made a key decision to substitute the Daytona prototype’s race crankshaft with a pre-production F-150 Raptor crankshaft. The Daytona prototype won its first race at Sebring that year.

 

UP OR DOWN

“We pushed the engine’s limits beyond what we might consider in traditional development programs, which is important as we continue to advance EcoBoost technology as a centerpiece of the company’s global lineup,” said Bob Fascetti, Ford vice president, powertrain engineering.

“All of the weight savings and engine advancements served a singular purpose – creating the fastest, most-efficient Ford GT ever,” Pericak said. “Once that was achieved, we reinvested some of those weight savings in truly innovative technology that made the car even faster and more fun to drive.” That includes GT’s hydraulic suspension, which changes ride height with a turn of the knob, which adjusts drive modes. The suspension lowers the supercar from normal mode into track mode – a 50 millimeter or nearly 2-inch difference the driver can see and feel. Track mode raises the wing and closes the front splitter ducts for optimal downforce for spirited, closed-course driving.

Myclassic News commends Ford and their team on this advancements they have mad with all this new technology. It is great to see American ingenuity at work in the automotive industry.

 

Photo Credit: All photos herein are the property of Ford Motor Company and were published by MyclassicNEWS with their permission and consent. All content herein, other than property published by permission, is the property of myclassicnews.com and any reproduction, other than normal social media sharing, is strictly prohibited. Copyright ©, myclassicnews.com. For reprint permission contact us at rick@duncanwalls.com

Be the first to comment

Leave a Reply